
Unsupervised Decomposition of a Document into Authorial Components

Moshe Koppel Navot Akiva Idan Dershowitz Nachum Dershowitz
Dept. of Computer Science Dept. of Bible School of Computer Science

Bar-Ilan University Hebrew University Tel Aviv University
Ramat Gan, Israel Jerusalem, Israel Ramat Aviv, Israel

{moishk,navot.akiva}@gmail.com dershowitz@gmail.com nachumd@tau.ac.il

Abstract

We propose a novel unsupervised method
for separating out distinct authorial compo-
nents of a document. In particular, we show
that, given a book artificially “munged”
from two thematically similar biblical
books, we can separate out the two consti-
tuent books almost perfectly. This allows
us to automatically recapitulate many con-
clusions reached by Bible scholars over
centuries of research. One of the key ele-
ments of our method is exploitation of dif-
ferences in synonym choice by different
authors.

1 Introduction

We propose a novel unsupervised method for
separating out distinct authorial components of a
document.

There are many instances in which one is faced
with a multi-author document and wishes to deli-
neate the contributions of each author. Perhaps the
most salient example is that of documents of his-
torical significance that appear to be composites of
multiple earlier texts. The challenge for literary
scholars is to tease apart the document’s various
components. More contemporary examples include
analysis of collaborative online works in which
one might wish to identify the contribution of a
particular author for commercial or forensic pur-
poses.

We treat two versions of the problem. In the
first, easier, version, the document to be decom-
posed is given to us segmented into units, each of
which is the work of a single author. The challenge

is only to cluster the units according to author. In
the second version, we are given an unsegmented
document and the challenge includes segmenting
the document as well as clustering the resulting
units.

We assume here that no information about the
authors of the document is available and that in
particular we are not supplied with any identified
samples of any author’s writing. Thus, our me-
thods must be entirely unsupervised.

There is surprisingly little literature on this
problem, despite its importance. Some work in this
direction has been done on intrinsic plagiarism de-
tection (e.g., Meyer zu Eisen 2006) and document
outlier detection (e.g., Guthrie et al. 2008), but this
work makes the simplifying assumption that there
is a single dominant author, so that outlier units
can be identified as those that deviate from the
document as a whole. We don’t make this simpli-
fying assumption. Some work on a problem that is
more similar to ours was done by Graham et al.
(2005). However, they assume that examples of
pairs of paragraphs labeled as same-
author/different-author are available for use as the
basis of supervised learning. We make no such
assumption.

The obvious approach to our unsupervised ver-
sion of the problem would be to segment the text
(if necessary), represent each of the resulting units
of text as a bag-of-words, and then use clustering
algorithms to find natural clusters. We will see,
however, that this naïve method is quite inade-
quate. Instead, we exploit a method favored by the
literary scholar, namely, the use of synonym
choice. Synonym choice proves to be far more use-
ful for authorial decomposition than ordinary lexi-
cal features. However, synonyms are relatively

sparse and hence, though reliable, they are not
comprehensive; that is, they are useful for separat-
ing out some units but not all. Thus, we use a two-
stage process: first find a reliable partial clustering
based on synonym usage and then use these as the
basis for supervised learning using a different fea-
ture set, such as bag-of-words.

We use biblical books as our testbed. We do
this for two reasons. First, this testbed is well mo-
tivated, since scholars have been doing authorial
analysis of biblical literature for centuries. Second,
precisely because it is of great interest, the Bible
has been manually tagged in a variety of ways that
are extremely useful for our method.

Our main result is that given artificial books
constructed by randomly “munging” together ac-
tual biblical books, we are able to separate out au-
thorial components with extremely high accuracy,
even when the components are thematically simi-
lar. Moreover, our automated methods recapitulate
many of the results of extensive manual research in
authorial analysis of biblical literature.

The structure of the paper is as follows. In the
next section, we briefly review essential informa-
tion regarding our biblical testbed. In Section 3, we
introduce a naïve method for separating compo-
nents and demonstrate its inadequacy. In Section 4,
we introduce the synonym method, in Section 5 we
extend it to the two-stage method, and in Section 6,
we offer systematic empirical results to validate
the method. In Section 7, we extend our method to
handle documents that have not been pre-
segmented and present more empirical results. In
Section 8, we suggest conclusions, including some
implications for Bible scholarship.

2 The Bible as Testbed

While the biblical canon differs across religions
and denominations, the common denominator con-
sists of twenty-odd books and several shorter
works, ranging in length from tens to thousands of
verses. These works vary significantly in genre,
and include historical narrative, law, prophecy, and
wisdom literature. Some of these books are re-
garded by scholars as largely the product of a sin-
gle author’s work, while others are thought to be
composites in which multiple authors are well-
represented – authors who in some cases lived in
widely disparate periods. In this paper, we will
focus exclusively on the Hebrew books of the Bi-

ble, and we will work with the original untran-
slated texts.

The first five books of the Bible, collectively
known as the Pentateuch, are the subject of much
controversy. According to the predominant Jewish
and Christian traditions, the five books were writ-
ten by a single author – Moses. Nevertheless, scho-
lars have found in the Pentateuch what they believe
are distinct narrative and stylistic threads corres-
ponding to multiple authors.

Until now, the work of analyzing composite
texts has been done in mostly impressionistic fa-
shion, whereby each scholar attempts to detect the
telltale signs of multiple authorship and compila-
tion. Some work on biblical authorship problems
within a computational framework has been at-
tempted, but does not handle our problem. Much
earlier work (for example, Radday 1970; Bee
1971; Holmes 1994) uses multivariate analysis to
test whether the clusters in a given clustering of
some biblical text are sufficiently distinct to be
regarded as probably a composite text. By contrast,
our aim is to find the optimal clustering of a docu-
ment, given that it is composite. Crucially, unlike
that earlier work, we empirically prove the efficacy
of our methods by testing it against known ground
truth. Other computational work on biblical au-
thorship problems (Mealand 1995; Berryman et al.
2003) involves supervised learning problems
where some disputed text is to be attributed to one
of a set of known authors. The supervised author-
ship attribution problem has been well-researched
(for surveys, see Juola (2008), Koppel et al. (2009)
and Stamatatos (2009)), but it is quite distinct from
the unsupervised problem we consider here.

Since our problem has been dealt with almost
exclusively using heuristic methods, the subjective
nature of such research has left much room for de-
bate. We propose to set this work on a firm algo-
rithmic basis by identifying an optimal stylistic
subdivision of the text. We do not concern our-
selves with how or why such distinct threads exist.
Those for whom it is a matter of faith that the Pen-
tateuch is not a composition of multiple writers can
view the distinction investigated here as that of
multiple styles.

3 A Naïve Algorithm

For expository purposes, we will use a canoni-
cal example to motivate and illustrate each of a

sequence of increasingly sophisticated algorithms
for solving the decomposition problem. Jeremiah
and Ezekiel are two roughly contemporaneous
books belonging to the same biblical sub-genre
(prophetic works), and each is widely thought to
consist primarily of the work of a single distinct
author. Jeremiah consists of 52 chapters and Eze-
kiel consists of 48 chapters. For our first challenge,
we are given all 100 unlabeled chapters and our
task is to separate them out into the two constituent
books. (For simplicity, let’s assume that it is
known that there are exactly two natural clusters.)
Note that this is a pre-segmented version of the
problem since we know that each chapter belongs
to only one of the books.

As a first try, the basics of which will serve as a
foundation for more sophisticated attempts, we do
the following:
1. Represent each chapter as a bag-of-words (us-

ing all words that appear at least k times in the
corpus).

2. Compute the similarity of every pair of chapters
in the corpus.

3. Use a clustering algorithm to cluster the chap-
ters into two clusters.
We use k=2, cosine similarity and ncut cluster-

ing (Dhillon et al. 2004). Comparing the Jeremiah-
Ezekiel split to the clusters thus obtained, we have
the following matrix:

Book Cluster I Cluster II
Jer
Eze

29
28

23
20

As can be seen, the clusters are essentially or-

thogonal to the Jeremiah-Ezekiel split. Ideally,
100% of the chapters would lie on the majority
diagonal, but in fact only 51% do. Formally, our
measure of correspondence between the desired
clustering and the actual one is computed by first
normalizing rows and then computing the weight
of the majority diagonal relative to the whole. This
measure, which we call normalized majority di-
agonal (NMD), runs from 50% (when the clusters
are completely orthogonal to the desired split) to
100% (where the clusters are identical with the
desired split). NMD is equivalent to maximal ma-
cro-averaged recall where the maximum is taken
over the (two) possible assignments of books to
clusters. In this case, we obtain an NMD of 51.5%,
barely above the theoretical minimum.

This negative result is not especially surprising
since there are many ways for the chapters to split
(e.g., according to thematic elements, sub-genre,
etc.) and we can’t expect an unsupervised method
to read our minds. Thus, to guide the method in the
direction of stylistic elements that might distin-
guish between Jeremiah and Ezekiel, we define a
class of generic biblical words consisting of all 223
words that appear at least five times in each of ten
different books of the Bible.

Repeating our experiment of above, though li-
miting our feature set to generic biblical words, we
obtain the following matrix:

Book Cluster I Cluster II
Jer
Eze

32
28

20
20

As can be seen, using generic words yields

NMD of 51.3%, which does not improve matters at
all. Thus, we need to try a different approach.

4 Exploiting Synonym Usage

One of the key features used by Bible scholars
to classify different components of biblical litera-
ture is synonym choice. The underlying hypothesis
is that different authorial components are likely to
differ in the proportions with which alternative
words from a set of synonyms (synset) are used.
This hypothesis played a part in the pioneering
work of Astruc (1753) on the book of Genesis –
using a single synset: divine names – and has been
refined by many others using broader feature sets,
such as that of Carpenter and Hartford-Battersby
(1900). More recently, the synonym hypothesis has
been used in computational work on authorship
attribution of English texts in the work of Clark
and Hannon (2007) and Koppel et al. (2006).

This approach presents several technical chal-
lenges. First, ideally – in the absence of a suffi-
ciently comprehensive thesaurus – we would wish
to identify synonyms in an automated fashion.
Second, we need to adapt our similarity measure
for reasons that will be made clear below.

4.1 (Almost) Automatic Synset Identification

One of the advantages of using biblical litera-
ture is the availability of a great deal of manual
annotation. In particular, we are able to identify
synsets by exploiting the availability of the stan-
dard King James translation of the Bible into Eng-

lish (KJV). Conveniently, and unlike most modern
translations, KJV almost invariably translates syn-
onyms identically. Thus, we can generally identify
synonyms by considering the translated version of
the text. There are two points we need to be precise
about. First, it is not actually words that we regard
as synonymous, but rather word roots. Second, to
be even more precise, it is not quite roots that are
synonymous, but rather senses of roots. Conve-
niently, Strong’s (1890 [2010]) Concordance lists
every occurrence of each sense of each root that
appears in the Bible separately (where senses are
distinguished in accordance with the KJV transla-
tion). Thus, we can exploit KJV and the concor-
dance to automatically identify synsets as well as
occurrences of the respective synonyms in a syn-
set.1 (The above notwithstanding, there is still a
need for a bit of manual intervention: due to poly-
semy in English, false synsets are occasionally
created when two non-synonymous Hebrew words
are translated into two senses of the same English
word. Although this could probably be handled
automatically, we found it more convenient to do a
manual pass over the raw synsets and eliminate the
problems.)

The above procedure yields a set of 529 synsets
including a total of 1595 individual synonyms.
Most synsets consist of only two synonyms, but
some include many more. For example, there are 7
Hebrew synonyms corresponding to “fear”.

4.2 Adapting the Similarity Measure

Let’s now represent a unit of text as a vector in
the following way. Each entry represents a syn-
onym in one of the synsets. If none of the syn-
onyms in a synset appear in the unit, all their cor-
responding entries are 0. If j different synonyms in
a synset appear in the unit, then each correspond-
ing entry is 1/j and the rest are 0. Thus, in the typi-
cal case where exactly one of the synonyms in a
synset appears, its corresponding entry in the vec-
tor is 1 and the rest are 0.

Now we wish to measure the similarity of two
such vectors. The usual cosine measure doesn’t
capture what we want for the following reason. If
the two units use different members of a synset,
cosine is diminished; if they use the same members
of a synset, cosine is increased. So far, so good.
But suppose one unit uses a particular synonym

1 Thanks to Avi Shmidman for his assistance with this.

and the other doesn’t use any member of that syn-
set. This should teach us nothing about the similar-
ity of the two units, since it reflects only on the
relevance of the synset to the content of that unit; it
says nothing about which synonym is chosen when
the synset is relevant. Nevertheless, in this case,
cosine would be diminished.

The required adaptation is as follows: we first
eliminate from the representation any synsets that
do not appear in both units (where a synset is said
to appear in a unit if any of its constituent syn-
onyms appear in the unit). We then compute cosine
of the truncated vectors. Formally, for a unit x
represented in terms of synonyms, our new similar-

ity measure is cos'(x,y) = cos(x|S(xy),y|S(xy)),

where x|S(xy) is the projection of x onto the syn-
sets that appear in both x and y.

4.3 Clustering Jeremiah-Ezekiel Using Syn-
onyms

We now apply ncut clustering to the similarity
matrix computed as described above. We obtain
the following split:

Book Cluster I Cluster II
Jer
Eze

48
5

4
43

Clearly, this is quite a bit better than results ob-

tained using simple lexical features as described
above. Intuition for why this works can be pur-
chased by considering concrete examples. There
are two Hebrew synonyms – pâh and miqôa
corresponding to the word “corner”, two (minâh
and trûmâh) corresponding to the word “obla-
tion”, and two (na and šal) corresponding to
the word “planted”. We find that pâh, minâh
and na tend to be located in the same units and,
concomitantly, miqôa, trûmâh and šal are lo-
cated in the same units. Conveniently, the former
are all Jeremiah and the latter are all Ezekiel.

While the above result is far better than those
obtained using more naïve feature sets, it is, never-
theless, far from perfect. We have, however, one
more trick at our disposal that will improve these
results further.

5 Combining Partial Clustering and Su-
pervised Learning

Analysis of the above clustering results leads to
two observations. First, some of the units belong

firmly to one cluster or the other. The rest have to
be assigned to one cluster or the other because
that’s the nature of the clustering algorithm, but in
fact are not part of what we might think of as the
core of either cluster. Informally, we say that a unit
is in the core of its cluster if it is sufficiently simi-
lar to the centroid of its cluster and it is sufficiently
more similar to the centroid of its cluster than to
any other centroid. Formally, let S be a set of syn-
sets, let B be a set of units, and let C be a cluster-
ing of B where the units in B are represented in
terms of the synsets in S. For a unit x in cluster
C(x) with centroid c(x), we say that x is in the core
of C(x) if cos'(x,c(x))>1 and cos'(x,c(x))-cos'(x,c)>2

for every centroid cc(x). In our experiments be-

low, we use 1=1/2 (corresponding to an angle of
less than 45 degrees between x and the centroid of

its cluster) and 2=0.1.
Second, the clusters that we obtain are based on

a subset of the full collection of synsets that does
the heavy lifting. Formally, we say that a synonym
n in synset s is over-represented in cluster C if
p(xC|nx) > p(xC|sx) and p(xC|nx) > p(xC).
That is, n is over-represented in C if knowing that
n appears in a unit increases the likelihood that the
unit is in C, relative to knowing only that some
member of n’s synset appears in the unit and rela-
tive to knowing nothing. We say that a synset s is a
separating synset for a clustering {C1,C2} if some
synonym in s is over-represented in C1 and a dif-
ferent synonym in s is over-represented in C2.

5.1 Defining the Core of a Cluster

We leverage these two observations to formally
define the cores of the respective clusters using the
following iterative algorithm.
1. Initially, let S be the collection of all synsets, let

B be the set of all units in the corpus
represented in terms of S, and let {C1,C2} be
an initial clustering of the units in B.

2. Reduce B to the cores of C1 and C2.
3. Reduce S to the separating synsets for {C1,C2}.
4. Redefine C1 and C2 to be the clusters obtained

from clustering the units in the reduced B
represented in terms of the synsets in reduced S.

5. Repeat Steps 2-4 until convergence (no further
changes to the retained units and synsets).
At the end of this process, we are left with two

well-separated cluster cores and a set of separating
synsets. When we compute cores of clusters in our

Jeremiah-Ezekiel experiment, 26 of the initial 100
units are eliminated. Of the 154 synsets that appear
in the Jeremiah-Ezekiel corpus, 118 are separating
synsets for the resulting clustering. The resulting
cluster cores split with Jeremiah and Ezekiel as
follows:

Book Cluster I Cluster II
Jer
Eze

36
2

0
36

We find that all but two of the misplaced units

are not part of the core. Thus, we have a better
clustering but it is only a partial one.

5.2 Using Cores for Supervised Learning

Now that we have what we believe are strong
representatives of each cluster, we can use them in
a supervised way to classify the remaining unclus-
tered units. The interesting question is which fea-
ture set we should use. Using synonyms would just
get us back to where we began. Instead we use the
set of generic Bible words introduced earlier. The
point to recall is that while this feature set proved
inadequate in an unsupervised setting, this does not
mean that it is inadequate for separating Jeremiah
and Ezekiel, given a few good training examples.

Thus, we use a bag-of-words representation re-
stricted to generic Bible words for the 74 units in
our cluster cores and label them according to the
cluster to which they were assigned. We now apply
SVM to learn a classifier for the two clusters. We
assign each unit, including those in the training set,
to the class assigned to it by the SVM classifier.
The resulting split is as follows:

Book Cluster I Cluster II
Jer
Eze

51
0

1
48

Remarkably, even the two Ezekiel chapters that

were in the Jeremiah cluster (and hence were es-
sentially misleading training examples) end up on
the Ezekiel side of the SVM boundary.

It should be noted that our two-stage approach
to clustering is a generic method not specific to our
particular application. The point is that there are
some feature sets that are very well suited to a par-
ticular unsupervised problem but are sparse, so
they give only a partial clustering. At the same
time, there are other feature sets that are denser
and, possibly for that reason, adequate for super-

vised separation of the intended classes but inade-
quate for unsupervised separation of the intended
classes. This suggests an obvious two-stage me-
thod for clustering, which we use here to good ad-
vantage.

This method is somewhat reminiscent of semi-
supervised methods sometimes used in text catego-
rization where few training examples are available
(Nigam et al. 2000). However, those methods typi-
cally begin with some information, either in the
form of a small number of labeled documents or in
the form of keywords, while we are not supplied
with these. Furthermore, the semi-supervised work
bootstraps iteratively, at each stage using features
drawn from within the same feature set, while we
use exactly two stages, the second of which uses a
different type of feature set than the first.

For the reader’s convenience, we summarize the
entire two-stage method:
1. Represent units in terms of synonyms.
2. Compute similarities of pairs of units using

cos'.
3. Use ncut to obtain an initial clustering.
4. Use the iterative method to find cluster cores.
5. Represent units in cluster cores in terms of ge-

neric words.
6. Use units in cluster cores as training for learn-

ing an SVM classifier.
7. Classify all units according to the learned SVM

classifier.

6 Empirical Results

We now test our method on other pairs of bibli-
cal books to see if we obtain comparable results to
those seen above. We need, therefore, to identify a
set of biblical books such that (i) each book is suf-
ficiently long (say, at least 20 chapters), (ii) each is
written by one primary author, and (iii) the authors
are distinct. Since we wish to use these books as a
gold standard, it is important that there be a broad
consensus regarding the latter two, potentially con-
troversial, criteria. Our choice is thus limited to the
following five books that belong to two biblical
sub-genres: Isaiah, Jeremiah, Ezekiel (prophetic
literature), Job and Proverbs (wisdom literature).
(Due to controversies regarding authorship (Pope
1952, 1965), we include only Chapters 1-33 of
Isaiah and only Chapters 3-41 of Job.)

Recall that our experiment is as follows: For
each pair of books, we are given all the chapters in

the union of the two books and are given no infor-
mation regarding labels. The object is to sort out
the chapters belonging to the respective two books.
(The fact that there are precisely two constituent
books is given.)

We will use the three algorithms seen above:
1. generic biblical words representation and ncut

clustering;
2. synonym representation and ncut clustering;
3. our two-stage algorithm.

We display the results in two separate figures.
In Figure 1, we see results for the six pairs of
books that belong to different sub-genres. In Figure
2, we see results for the four pairs of books that are
in the same genre. (For completeness, we include
Jeremiah-Ezekiel, although it served above as a
development corpus.) All results are normalized
majority diagonal.

Figure 1. Results of three clustering methods for differ-
ent-genre pairs

Figure 2. Results of three clustering methods for same-
genre pairs

As is evident, for different-genre pairs, even the
simplest method works quite well, though not as
well as the two-stage method, which is perfect for
five of six such pairs. The real advantage of the
two-stage method is for same-genre pairs. For

these the simple method is quite erratic, while the
two-stage method is near perfect. We note that the
synonym method without the second stage is
slightly worse than generic words for different-
genre pairs (probably because these pairs share
relatively few synsets) but is much more consistent
for same-genre pairs, giving results in the area of
90% for each such pair. The second stage reduces
the errors considerably over the synonym method
for both same-genre and different-genre pairs.

7 Decomposing Unsegmented Documents

Up to now, we have considered the case where
we are given text that has been pre-segmented into
pure authorial units. This does not capture the kind
of decomposition problems we face in real life. For
example, in the Pentateuch problem, the text is
divided up according to chapter, but there is no
indication that the chapter breaks are correlated
with crossovers between authorial units. Thus, we
wish now to generalize our two-stage method to
handle unsegmented text.

7.1 Generating Composite Documents

To make the problem precise, let’s consider
how we might create the kind of document that we
wish to decompose. For concreteness, let’s think
about Jeremiah and Ezekiel. We create a composite
document, called Jer-iel, as follows:
1. Choose the first k1 available verses of Jeremiah,

where k1 is a random integer drawn from the
uniform distribution over the integers 1 to m.

2. Choose the first k2 available verses of Ezekiel,
where k2 is a new random integer drawn from
the above distribution.

3. Repeat until one of the books is exhausted; then
choose the remaining verses of the other book.
For the experiments discussed below, we use

m=100 (though further experiments, omitted for
lack of space, show that results shown are essen-
tially unchanged for any m60). Furthermore, to
simulate the Pentateuch problem, we break Jer-iel
into initial units by beginning a new unit whenever
we reach the first verse of one of the original chap-
ters of Jeremiah or Ezekiel. (This does not leak any
information since there is no inherent connection
between these verses and actual crossover points.)

7.2 Applying the Two-Stage Method

Our method works as follows. First, we refine
the initial units (each of which might be a mix of
verses from Jeremiah and Ezekiel) by splitting
them into smaller units that we hope will be pure
(wholly from Jeremiah or from Ezekiel). We say
that a synset is doubly-represented in a unit if the
unit includes two different synonyms of that syn-
set. Doubly-represented synsets are an indication
that the unit might include verses from two differ-
ent books. Our object is thus to split the unit in a
way that minimizes doubly-represented synonyms.
Formally, let M(x) represent the number of synsets
for which more than one synonym appear in x. Call
x1,x2 a split of x if x=x1x2. A split x1',x2' is optim-
al if x1',x2'= argmax M(x)-max(M(x1),M(x2)) where
the maximum is taken over all splits of x. If for an
initial unit, there is some split for which M(x)-

max(M(x1),M(x2)) is greater than 0, we split the unit
optimally; if there is more than one optimal split,
we choose the one closest to the middle verse of
the unit. (In principle, we could apply this proce-
dure iteratively; in the experiments reported here,
we split only the initial units but not split units.)

Next, we run the first six steps of the two-stage
method on the units of Jer-iel obtained from the
splitting process, as described above, until the
point where the SVM classifier has been learned.
Now, instead of classifying chapters as in Step 7 of
the algorithm, we classify individual verses.

The problem with classifying individual verses
is that verses are short and may contain few or no
relevant features. In order to remedy this, and also
to take advantage of the stickiness of classes across
consecutive verses (if a given verse is from a cer-
tain book, there is a good chance that the next
verse is from the same book), we use two smooth-
ing tactics.

Initially, each verse is assigned a raw score by
the SVM classifier, representing its signed distance
from the SVM boundary. We smooth these scores
by computing for each verse a refined score that is
a weighted average of the verse’s raw score and
the raw scores of the two verses preceding and
succeeding it. (In our scheme, the verse itself is
given 1.5 times as much weight as its immediate
neighbors and three times as much weight as sec-
ondary neighbors.)

Moreover, if the refined score is less than 1.0
(the width of the SVM margin), we do not initially

assign the verse to either class. Rather, we check
the class of the last assigned verse before it and the
first assigned verse after it. If these are the same,
the verse is assigned to that class (an operation we
call “filling the gaps”). If they are not, the verse
remains unassigned.

To illustrate on the case of Jer-iel, our original
“munged” book has 96 units. After pre-splitting,
we have 143 units. Of these, 105 are pure units.
Our two cluster cores, include 33 and 39 units, re-
spectively; 27 of the former are pure Jeremiah and
30 of the latter are pure Ezekiel; no pure units are
in the “wrong” cluster core. Applying the SVM
classifier learned on the cluster cores to individual
verses, 992 of the 2637 verses in Jer-iel lie outside
the SVM margin and are assigned to some class.
All but four of these are assigned correctly. Filling
the gaps assigns a class to 1186 more verses, all
but ten of them correctly. Of the remaining 459
unassigned verses, most lie along transition points
(where smoothing tends to flatten scores and where
preceding and succeeding assigned verses tend to
belong to opposite classes).

7.3 Empirical Results

We randomly generated composite books for
each of the book pairs considered above. In Fig-
ures 3 and 4, we show for each book pair the per-
centage of all verses in the munged document that
are “correctly” classed (that is, in the majority di-
agonal), the percentage incorrectly classed (minori-
ty diagonal) and the percentage not assigned to
either class. As is evident, in each case the vast
majority of verses are correctly assigned and only a
small fraction are incorrectly assigned. That is, we
can tease apart the components almost perfectly.

Figure 3. Percentage of verses in each munged differ-
ent-genre pair of books that are correctly and incorrectly
assigned or remain unassigned.

Figure 4. Percentage of verses in each munged same-
genre pair of books that are correctly and incorrectly
assigned or remain unassigned.

8 Conclusions and Future Work

We have shown that documents can be decom-
posed into authorial components with very high
accuracy by using a two-stage process. First, we
establish a reliable partial clustering of units by
using synonym choice and then we use these par-
tial clusters as training texts for supervised learn-
ing using generic words as features.

We have considered only decompositions into
two components, although our method generalizes
trivially to more than two components, for example
by applying it iteratively. The real challenge is to
determine the correct number of components,
where this information is not given. We leave this
for future work.

Despite this limitation, our success on munged
biblical books suggests that our method can be
fruitfully applied to the Pentateuch, since the broad
consensus in the field is that the Pentateuch can be
divided into two main authorial categories: Priestly
(P) and non-Priestly (Driver 1909). (Both catego-
ries are often divided further, but these subdivi-
sions are more controversial.) We find that our
split corresponds to the expert consensus regarding
P and non-P for over 90% of the verses in the Pen-
tateuch for which such consensus exists. We have
thus been able to largely recapitulate several centu-
ries of painstaking manual labor with our auto-
mated method. We offer those instances in which
we disagree with the consensus for the considera-
tion of scholars in the field.

In this work, we have exploited the availability
of tools for identifying synonyms in biblical litera-
ture. In future work, we intend to extend our me-
thods to texts for which such tools are unavailable.

References

J. Astruc. 1753. Conjectures sur les mémoires originaux
dont il paroit que Moyse s’est servi pour composer le
livre de la Genèse. Brussels.

R. E. Bee. 1971. Statistical methods in the study of the
Masoretic text of the Old Testament. J. of the Royal
Statistical Society, 134(1):611-622.

M. J. Berryman, A. Allison, and D. Abbott. 2003. Sta-
tistical techniques for text classification based on
word recurrence intervals. Fluctuation and Noise Let-
ters, 3(1):L1-L10.

J. E. Carpenter, G. Hartford-Battersby. 1900. The Hex-
ateuch: According to the Revised Version. London.

J. Clark and C. Hannon. 2007. A classifier system for
author recognition using synonym-based features.
Proc. Sixth Mexican International Conference on Ar-
tificial Intelligence, Lecture Notes in Artificial Intel-
ligence, vol. 4827, pp. 839-849.

I. S. Dhillon, Y. Guan, and B. Kulis. 2004. Kernel k-
means: spectral clustering and normalized cuts. Proc.
ACM International Conference on Knowledge Dis-
covery and Data Mining (KDD), pp. 551-556.

S. R. Driver. 1909. An Introduction to the Literature of
the Old Testament (8th ed.). Clark, Edinburgh.

N. Graham, G. Hirst, and B. Marthi. 2005. Segmenting
documents by stylistic character. Natural Language
Engineering, 11(4):397-415.

D. Guthrie, L. Guthrie, and Y. Wilks. 2008. An unsu-
pervised probabilistic approach for the detection of
outliers in corpora. Proc. Sixth International Lan-
guage Resources and Evaluation (LREC'08), pp. 28-
30.

D. Holmes. 1994. Authorship attribution, Computers
and the Humanities, 28(2):87-106.

P. Juola. 2008. Author Attribution. Series title:
Foundations and Trends in Information Retriev-
al. Now Publishing, Delft.

M. Koppel, N. Akiva, and I. Dagan. 2006. Feature in-
stability as a criterion for selecting potential style

markers. J. of the American Society for Information
Science and Technology, 57(11):1519-1525.

M. Koppel, J. Schler, and S. Argamon. 2009. Compu-
tational methods in authorship attribution. J. of the
American Society for Information Science and Tech-
nology, 60(1):9-26.

D. L. Mealand. 1995. Correspondence analysis of Luke.
Lit. Linguist Computing, 10(3):171-182.

S. Meyer zu Eisen and B. Stein. 2006. Intrinsic plagiar-
ism detection. Proc. European Conference on Infor-
mation Retrieval (ECIR 2006), Lecture Notes in
Computer Science, vol. 3936, pp. 565–569.

K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mit-
chell. 2000. Text classification from labeled and un-
labeled documents using EM, Machine Learning,
39(2/3):103-134.

M. H. Pope. 1965. Job (The Anchor Bible, Vol. XV).
Doubleday, New York, NY.

M. H. Pope. 1952. Isaiah 34 in relation to Isaiah 35, 40-
66. Journal of Biblical Literature, 71(4):235-243.

Y. Radday. 1970. Isaiah and the computer: A prelimi-
nary report, Computers and the Humanities, 5(2):65-
73.

E. Stamatatos. 2009. A survey of modern authorship
attribution methods. J. of the American Society for
Information Science and Technology, 60(3):538-556.

J. Strong. 1890. The Exhaustive Concordance of the
Bible. Nashville, TN. (Online edition:
http://www.htmlbible.com/sacrednamebiblecom/kjvs
trongs/STRINDEX.htm; accessed 14 November
2010.)

